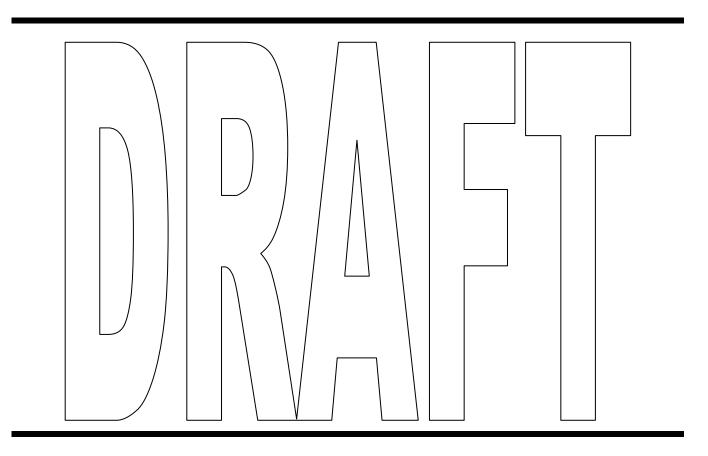
FGIA/WDMA Installation
Committee Approval

Successful Ballot #22-1013 Successful Ballot #22-1023 Unsuccessful Ballot 22-1068 Successful Ballot 23-1027 Successful Ballot 24-1035 Successful Ballot #25-1033


Out for Ballot #25-1058

Wall Interface Council Approval

Successful Ballot #24-1048 Successful for Ballot #25-1034 Out for Ballot 25-1059 Technical Steering Committee
Approval

FMA/AAMA 100-XX DRAFT #10 DATED 9/5/25

Standard Practice for the Installation of Windows with Mounting Flanges for Membrane Drainage Systems

TABLE OF CONTENTS

0.0 INTRODUCTION	
1.0 SCOPE	1
2.0 REFERENCED PUBLICATIONS	2
3.0 DEFINITIONS	3
4.0 SIGNIFICANCE AND USE	3
5.0 RELATED ISSUES AND PROCEDURES	4
6.0 WINDOW PRE-INSTALLATION PROCEDURES	5
7.0 WINDOW INSTALLATION PROCEDURES	6
8.0 POST INSTALLATION PROCEDURES	
APPENDIX A: STAKEHOLDER RESPONSIBILITIES	21
APPENDIX B: ALTERNATIVE WATER-RESISTIVE BARRIER (WRB) WRAP METHOD OPTIONS, M	ETHODS B1-100
AND C1-100	22
APPENDIX C: RECOMMENDATIONS WHEN USING MECHANICALLY ATTACHED FLASHING	28

This document was developed by representative members of FGIA as advisory information and published as a public service. FGIA disclaims all liability for the use, application or adaptation of materials published herein.

© Copyright 2025 Fenestration & Glazing Industry Alliance Email: <u>publications@fgiaonline.org</u> Website: <u>https://fgiaonline.org/</u>

0.0 INTRODUCTION

This standard practice includes procedures for the installation of windows with mounting flanges into new construction buildings with a membrane drainage plane behind the facade.

The techniques demonstrated in this standard practice have been developed specifically to allow incidental liquid water entering from superficial cracks, either in the cladding, window joinery or installation joints around the perimeter of the window, to drain onto the membrane drainage plane and to exit to the building exterior.

1.0 SCOPE

- 1.1 This standard practice covers the installation of windows in new construction buildings utilizing a membrane drainage system. It is expected that all referenced components shall meet all applicable building code requirements in force at the time of installation.
- 1.2 This practice addresses a separate water-resistive barrier (WRB) layer applied to sheathing and the resulting water management considerations.

CAUTION: This standard practice's tested method is limited to a WRB or drainage plane that consists of a correctly shingled mechanical lap of a water-resistive material over any joints or seams in the structural sheathing. For integrated WRB and fluid applied WRB materials, check with manufacturer for installation and water management assistance.

- 1.3 This standard practice covers the installation process for windows from pre- to post-installation. It does not include factory or field fabrication techniques that would be required to join individual windows to each other, either horizontally or vertically. For mulled assemblies, follow the manufacturer's instructions.
- 1.4 This standard practice provides recommended requirements for window installation based on current best practices. If the window manufacturer provides installation instructions, the manufacturer's instructions shall take precedence.
- 1.5 This standard practice provides installation instructions to enhance water management performance of the interface of the window with the opening.
- 1.6 Details for insulating between the rough opening and the product frame are beyond the scope of this document.
- 1.7 This standard practice does not address safety concerns, either from the installation process or those that may be present at the building site. It shall be the responsibility of the user of this standard practice to ensure that all appropriate health and safety practices have been implemented.
- 1.8 Accessibility requirements (such as ADA) are beyond the scope of this standard practice.

1.9 This standard practice does not address issues with drainage requirements of adjacent cladding or with integrating drainage requirements of the installation with the adjacent cladding. In all circumstances, the General Contractor is expected to follow all applicable building code requirements and best practices for integration with membrane drainage wall systems.

1.10 This document was developed in an open and consensus process and is maintained by representative members of FGIA and WDMA as advisory information.

2.0 REFERENCED PUBLICATIONS

2.1 References to the standards listed shall be to the edition indicated. Any undated reference to a code or standard appearing in the requirements of this standard shall be interpreted as referring to the latest edition of that code or standard.

2.2 AAMA, Fenestration and Glazing Industry Alliance (FGIA)

AAMA 711-22, Specification for Self-Adhering Flashing Used for Installation of Exterior Wall Fenestration Products

AAMA 712-23, Specification for Mechanically Attached Flexible Flashing

AAMA 713-24, Voluntary Test Methods to Evaluate Chemical Compatibility of Freshly-Applied Sealants with Freshly-Applied Liquid and/or Self-Adhered Flashing Materials

AAMA 714-22, Specification for Liquid Applied Flashing Used to Create a Water-Resistive Seal around Exterior Wall Openings in Buildings

AAMA 800-16, Voluntary Specifications and Test Methods for Sealants

AAMA 812-25, Voluntary Practice for Assessment of Frame Deflection When Using Propellant Expanding Foam Sealants for Air-Sealing Rough Openings of Fenestration Installations

FG-24, FGIA Glossary

2.3 ASTM

ASTM C794-18(2022), Standard Test Method for Adhesion-in-Peel of Elastomeric Joint Sealants

ASTM C920-18, Standard Specification for Elastomeric Joint Sealants

ASTM C1281-16(2023), Standard Specification for Preformed Tape Sealants for Glazing Applications

ASTM E331-00(2023), Standard Test Method for Water Penetration of Exterior Windows, Skylights, Doors, and Curtain Walls by Uniform Static Air Pressure Difference

ASTM E547-00(2016), Standard Test Method for Water Penetration of Exterior Windows, Skylights, Doors, and Curtain Walls by Cyclic Static Air Pressure Difference

ASTM E2112-23, Standard Practice for Installation of Exterior Windows, Doors and Skylights

2.4 ICC Evaluation Service (ICC ES)

AC 38-2016(2021), Acceptance Criteria for Water-Resistive Barriers (WRBs)

3.0 DEFINITIONS

Please refer to the most current version of the FGIA Glossary for all definitions.

4.0 SIGNIFICANCE AND USE

- 4.1 This standard practice recognizes that the effective performance of installed window products is highly dependent upon following proper installation procedures, using appropriate materials, and quality workmanship.
- 4.2 This standard practice recognizes that the coordination of trades and proper sequencing are essential for effective window installation. Responsibilities of trades are outlined in Appendix A. The general contractor shall be responsible for the necessary coordination of trades and proper construction sequencing of the installed fenestration product.
- 4.3 This standard practice recognizes that improper installation may contribute to excessive air infiltration, water penetration, sound leakage, insufficient structural integrity and condensation.
- 4.4 This standard practice presumes the installer/contractor has a working knowledge of applicable federal, state and local codes and regulations; specifically, but not limited to required means of egress, requirements for safety glazing materials and structural requirements based on the applicable codes.
- 4.5 This standard practice presumes the installer has a working knowledge of the tools, equipment and methods necessary for the installation of specified fenestration products. It further requires the installer to have familiarity with flashing and sealing techniques, application of caulking and sealants, finishes (where applicable), and an understanding of the fundamentals of construction that affect the installation of these units, including their compatibility with other materials.
- 4.6 This standard practice presumes that the products supplied have been furnished for the applicable installation and that their locations within the structure have been pre-determined to comply with all the applicable building codes and regulations.

5.0 RELATED ISSUES AND PROCEDURES

5.1 Continuity

Continuity shall be maintained between all elements of the surrounding wall, the window product and the WRB.

5.2 Joints and Anchorages

Joints and anchorages between the building envelope (WRB assembly) and window shall be designed to accommodate differential thermal expansion and contraction, as well as the structural requirements within the window/wall assembly.

5.3 Construction Damage

The building shall be constructed in such a manner as to secure or support the installation materials, including the flashing and WRB. The walls shall not be left unprotected or uncovered without cladding for longer than recommended by the WRB / flashing manufacturer. The installed WRB and flashing shall be protected from damage during construction. Any damage to the WRB or flashing created during the installation shall be repaired prior to completing the installation of the window and/or applying the exterior cladding.

5.4 Sealant Selection

Prior to using sealant, the general contractor, design professional or builder shall ensure that the sealant meets required specifications or standards. This includes proper chemical compatibility, proper adhesion to the substrates and joint design. If unsure, seek input from the sealant manufacturer regarding sealant selection. Clean and prep surfaces according to the sealant manufacturer's recommendations.

- Gunnable sealants shall comply with AAMA 808.3 per AAMA 800 Section 5.0 or ASTM C920 Class 25 Grade NS or greater for proper joint expansion and contraction. If preformed tapes are used, they shall meet ASTM C1281.
 If low expansion foams are used, they shall be tested in accordance with AAMA 812.
- All materials, such as, but not limited to coatings, flashings and sealants that come into contact with each other shall exhibit chemical compatibility, per AAMA 713. If unsure, seek input from the sealant manufacturer.
- Adhesion of sealants to the substrates shall be verified by the sealant manufacturer per ASTM C794.
- The design professional, general contractor or builder shall ensure the sealant joint is designed to accommodate
 the joint gap and expected joint movement between window and the wall opening for the intended purpose. If
 unsure, seek input from the sealant manufacturer.

5.5 Flashing Materials

Flashing materials shall meet the respective performance standard for the product type.

- Self-adhering flashing shall meet the performance requirements of AAMA 711.
- Liquid applied flashing shall meet the performance requirements of AAMA 714.
- Mechanically attached flashing shall meet the performance requirements of AAMA 712.

5.6 Exterior Cladding

Unless otherwise specified, exterior cladding shall not be installed prior to window installation.

5.7 Shims

Shims shall be installed per the manufacturer's installation instructions between the window frame and the rough opening in such a manner to support the product in a plumb, level, square and true position. Shims shall not interfere with continuity of air/water seals (see Section 7.6.2).

NOTE 2: ASTM E2112 provides additional guidance regarding the structural requirements for shims.

6.0 WINDOW PRE-INSTALLATION PROCEDURES

6.1 Rough Openings

- 6.1.1 Size and tolerances of the rough openings shall be determined from the window manufacturer's instructions and this standard practice. Remedy any discrepancies.
- 6.1.2 The rough opening shall be plumb, level, square and true prior to the installation of the window. No more than 6 mm (1/4 inch) deviation from square, height and width and 3 mm (1/8 inch) deviation from plumb shall be allowed, unless otherwise specified by the manufacturer's instructions.

6.2 Water-Resistive Barriers (WRBs)

This standard practice recommends that the WRB be installed prior to the window installation. The installation method described in this standard practice is based on this sequence. In the event that the WRB is installed after the window installation, refer to ASTM E2112 (Methods A and B), WRB manufacturer and/or window manufacturer for various sequencing considerations.

- NOTE 3: Systems which integrate the WRB with the wall sheathing are not covered in this document and instructions should be obtained from the sheathing system manufacturer.
- 6.2.1 The application of the WRB involves covering the vertical surfaces of the wall, lapped, fastened, taped, and sealed per the WRB manufacturer's instructions.
- 6.2.2 Penetrations through the WRB for the installation of windows shall be made in accordance with the WRB manufacturer's recommendations or this standard practice.

- 6.2.3 The WRB shall be applied in weatherboard fashion (shingled), starting at the base of the wall and working towards the top. The WRB shall be applied to the face of the building framing or sheathing.
- 6.2.4 Incidental water infiltration occurring through the WRB (at penetrations / seams / flashings etc.) is outside the scope of this standard practice and shall be brought to the attention of the contractor and / or discussed with the manufacturer of the WRB for potential resolutions.
- 6.2.5 Two Layer Water-Resistive Barrier (WRB) Systems

If required, a two-layer WRB or building paper (BP) system shall be used in accordance with state and local codes. The window shall be flashed/integrated with inner layer WRB.

- 6.3 Pre-Window-Installation Inspection
- 6.3.1 Before window installation, the installer shall inspect the WRB to ensure that it is installed in accordance with this standard practice and the WRB manufacturer's instructions. Any tears, penetrations or defects within the window installation scope of work shall be sealed per the WRB manufacturer's instructions.
- NOTE 4: Any tears, penetrations or defects in the WRB should be reported to the contractor and corrected prior to installation of cladding.
- 6.3.2 The installer shall verify that the rough opening is within acceptable tolerances for plumb, level, square, and true. The installer shall notify the contractor to remedy any discrepancies per this standard practice.
- 6.3.3 Installer shall inspect the fenestration product for damage prior to installation. Any damage shall be reported to the contractor.

7.0 WINDOW INSTALLATION PROCEDURES

7.1 Preparation of the Water-Resistive Barrier (WRB)

This practice details methods where the underside of the WRB is sealed at the rough opening at the jamb areas, per discussion in Section 6.2.4. There are three WRB prep methods that have been tested and approved. Method A1-100 is described in Section 7.1. Methods B1-100 and C1-100 are described in Appendix B. Always follow WRB manufacturer's instructions for proper modification and treatment of WRB.

7.1.1 Water-Resistive Barrier (WRB) Method A1-100

Box cut the WRB around the rough opening. Create a flap above the head with 45-degree cuts extending outward from each corner exposing sufficient area to apply head flashing to the drainage plane (see Figure 1). Trim 25 mm (1 inch) off the bottom of the WRB head flap for proper integration with the mounting flange at the head of the window. Raise the

bottom edge of the flap created in the WRB up and temporarily tape it to the exterior face of the WRB above (Figure 2). This is done to allow for installation of the window and head flashing later.

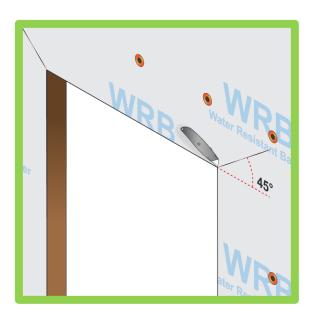


FIGURE 1

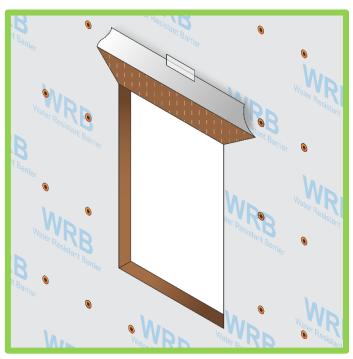


FIGURE 2

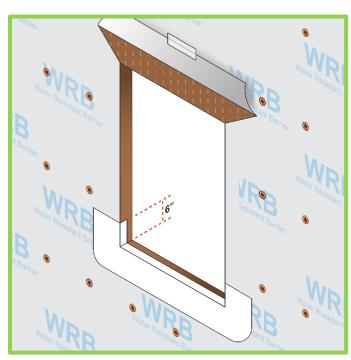


FIGURE 3

- 7.2 Applying a Sill Pan Flashing
- 7.2.1 Ensure that the rough opening sill area is clean and free of debris.

- 7.2.2 There are a variety of sill pan systems available. The pan flashing shall direct water to the exterior or to the membrane drainage plane for subsequent drainage to the exterior of the building. Refer to FMA/AAMA/WDMA 300 or ASTM E2112 for more details on sill pan systems. This method does not recognize mechanically attached flexible flashing for sill pan flashing.
- 7.2.3 When self-adhering flashing is used as a sill pan, cut to a length equal to the rough opening width plus at least 300 mm (12 inches), such that 150 mm (6 inches) minimum is used at each jamb to form end dams (See Figure 3).
- 7.3 Create a water-resistant seal at the WRB termination along the jamb with a minimum 100 mm (4 inches) self-adhering flashing between the jamb corners at the head down to the sill. Apply the flashing tape along the entire length of both jamb areas and return it into the rough opening to meet or exceed the depth of the window frame. Apply sealant at jamb/head interfaces (see Figure 5). See Figure 4 for jamb detail. Liquid applied flashing may also be used to create the water-resistant seal at the WRB termination along the jamb.

NOTE 5: Check with manufacturers for installation methods and to ensure compatibility, including adhesion, between WRB, flashing, and sealant materials.

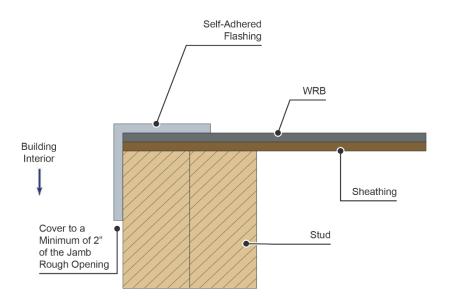


Figure 4 (Top View)

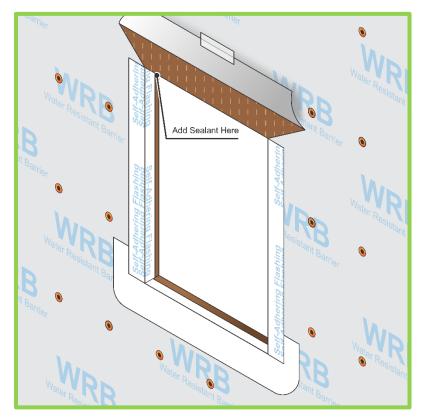


FIGURE 5

The self-adhering flashing sill pan system shall cover the sill to at least the depth of the window, plus at least 50 mm (2 inches), which shall lap onto the face of the WRB drainage plane. The upturned leg of the sill flashing shall extend horizontally onto the face of the drainage plane only to the extent such that it will be completely covered by the jamb flashing for proper lapping, as illustrated on Figure 4.

- NOTE 6: Refer to the fenestration or flashing manufacturer for other acceptable self-adhering flashing methods.
- 7.3.1 If a rigid or semi-rigid sill pan system is used, follow the manufacturer's instructions for installation details and integration with the WRB and flashing.
- 7.3.2 If liquid applied flashing is used to create the sill pan flashing, refer to AAMA 714.
- 7.3.2.1 Ensure that the rough opening sill area is clean and free of debris per manufacturers guidelines.
- 7.3.2.2 The liquid applied flashing shall be installed in a manner to direct water to the membrane drainage plane for subsequent drainage to the exterior of the building.
- 7.3.2.3 Apply liquid applied flashing into sill rough opening and up jambs 150 mm (6 inches) and out onto the face of the drainage plane a minimum of 50 mm (2 inches), but no more than 75 mm (3 inches), or per manufacturer's instructions.

- 7.3.2.4. If liquid applied flashing is to be used to treat the entire rough opening, apply liquid applied flashing into rough opening past the interior face of the window/door system and out onto the drainage plane 100 mm to 150 mm (4 to 6 inches).
- 7.3.2.5 Integrate liquid applied flashing to various WRB's per manufacturer's instructions.
- 7.4 Installation of Window into Rough Opening
- 7.4.1 Inspect and clean the back side (interior surface) of the exterior window mounting flange. Look for any sealant gaps or misaligned welding (particularly for vinyl products) at the corner joinery. If corner seals of the flange are missing in whole or part, contact the window manufacturer for the recommended remedy. Consult with the manufacturer for the removal of any protruding weld flashing.
- 7.4.2 After cleaning the mounting flange, carefully run a continuous 10 mm (3/8 inch) nominal diameter bead of sealant on the back surface (interior face) of the mounting flange (see Figure 6) of window at the head and both jambs. Apply sealant in line with any pre-punched holes or slots in the mounting flange. Connect that bead of sealant across any joinery on the window frame at all four corners. As an option, the sealant shall be permitted to be applied to the wall surface as opposed to the back of the mounting flange.

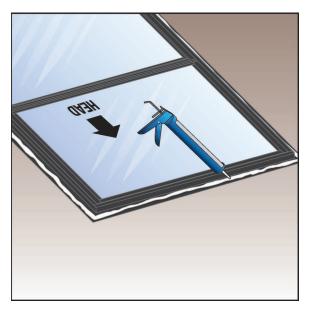


FIGURE 6

7.4.3 Apply a discontinuous bead of sealant on the interior surface of the mounting flange at the sill. The bead of sealant shall be discontinuous, leaving two 50 mm (2 inches) voids within 100 mm (4 inches) of each jamb (see Figure 7) and subsequent 50 mm (2 inches) voids shall be spaced 300 mm (12 inches) on center. Any alternative to the discontinuity in the bead of sealant at the exterior sill area shall be approved by the window manufacturer.

NOTE 7: Placement of shims or other thin spacers behind the nail flange at the sill may help ensure proper drainage.

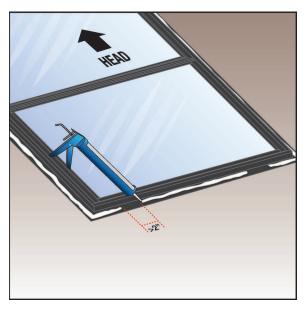
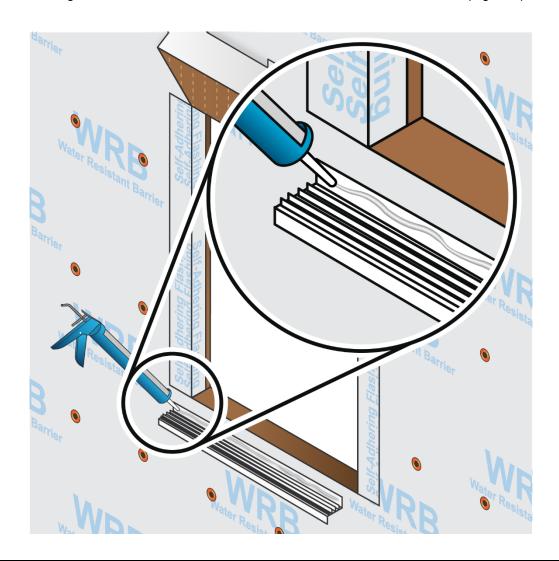



FIGURE 7

7.4.4 If a rigid or semi-rigid sill pan is used, apply a continuous bead of sealant to the outboard side of the upturned leg of the pan where it will integrate with the interior side of the window and form an air/water seal (Figure 8).

FIGURE 8

7.4.5 Immediately set the window in the opening (see Figure 9).

FIGURE 9

7.4.6 Hold the window temporarily into position and fasten the window perimeter securely into position in accordance with the manufacturer's instructions. Apply shims as required to ensure the window is set plumb, level, square and true, and is separated from the rough opening sill per manufacturer's instructions.

NOTE 8: Additional fasteners may be required at locations such as locking mechanism or hinges, per manufacturer's instructions.

7.4.6.1 For proper sealant coverage, ensure squeeze out under flange and in fastener holes (see Figure 10). Tool excessive squeeze out flat prior to applying self-adhering flashing.

NOTE 9: Ensure compatibility between the flashing and sealant per Section 5.4.1.

7.4.7 Install shims according to fenestration manufacturer's installation instructions and in such a manner that does not damage the WRB and does not interfere with the application of a continuous air seal, on the interior side in the steps that follow.

FIGURE 10

7.4.8 Prior to the installation of flashing, check the window to ensure proper operation.

7.5 Jamb and Head Flashing Installation

There are three options for jamb and head flashing installation covered in this section, which are as follows: Self-Adhering Flashing (see Section 7.5.1), Mechanically Attached Flexible Flashing (see Appendix C) and Liquid Applied Flashing (see Section 7.5.3).

7.5.1 Self-Adhering Flashing

7.5.1.1 Apply flashing over the mounting flange of the window at both jambs per manufacturer's instructions. The self-adhering flashing shall conform to the requirements of AAMA 711.

NOTE 10: Local job site conditions, application temperatures, or specific materials may require the application of primer as required by the flashing manufacturer.

7.5.1.2 Cut the jamb flashing to a length equal to the height of the rough opening plus sufficient length allow the head flashing to overlap the jamb flashing and the jamb flashing to overlap the sill flashing (see Figures 11a and 11b). The jamb flashing shall completely cover the upturned area of the sill flashing on the exterior drainage plane, per Figure 12.

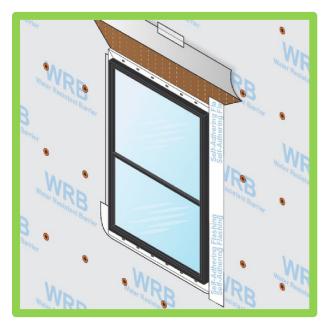


FIGURE 11a

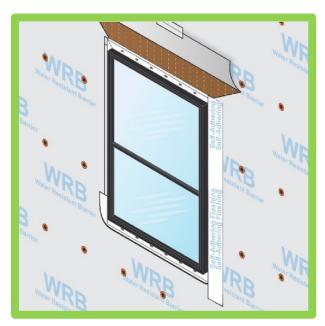


FIGURE 11b

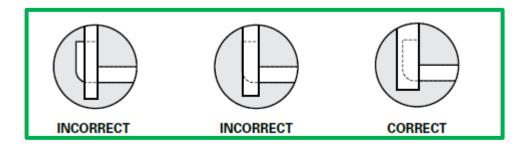


Figure 12

7.5.1.3 Apply the jamb flashing in such a fashion that the top end of the jamb flashing extends above the installed window flange at a distance that allows for the head flashing (installed later) to adhere to the drainage plane by at least 50 mm (2 inches). The head flashing, when installed, shall completely lap over the jamb flashing. (see Figure 13).

Do not interfere with the WRB flap at the head. Tuck the top of the jamb flashing under the flap of the WRB at the head.

7.5.1.4 Use firm pressure to apply the self-adhering flashing to promote seal to window flange and WRB. Use of a J-Roller is recommended.

NOTE 11: A J-Roller was used to apply the self-adhered flashing during validation of this installation method. Always consult with the manufacturer for proper application of self-adhered flashing.

7.5.1.5 Apply a piece of flashing across the head of the rough opening. The head flashing shall be cut to the width of the rough opening plus two times the roll width of the flashing, plus 100 mm (4 inches).

7.5.1.6 Adhere the self-adhering flashing with firm pressure (use of a J-Roller is recommended) across the head of the window on top of the mounting flange and beyond the rough opening on each side extending it 50 mm (2 inches) over the outside edge of the flashing at the jambs (see Figure 13).

FIGURE 13

7.5.1.7 Remove the previously applied tape which holds the flap of the WRB at the head. Allow the flap to lay flat over the head flashing. Apply a new piece of sheathing tape or self-adhering flashing over the WRB flap and the entire diagonal cut made in the WRB. The tape should be compressed against the WRB and the head flashing, which extends over the jamb (see Figure 14). Placing discontinuous lengths of tape across the width of the head seam between the WRB and the head flashing is acceptable but may result in increased air infiltration around the WRB.

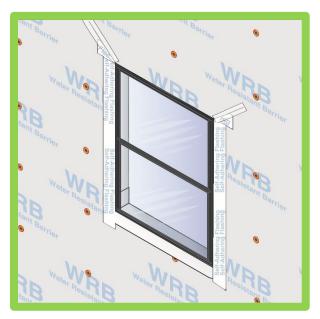


FIGURE 14

7.5.2 Mechanically Attached Flexible Flashing

See Appendix C: Recommendations When Using Mechanically Attached Flashing.

7.5.3 Liquid Applied Flashing (LAF)

7.5.3.1 Apply LAF over the mounting flange of the window at the head and both jambs per manufacturer's instructions. The LAF shall cover the outer edge of the mounting flanges and continue at least 2 inches onto the drainage plane. Spread the wet LAF over the mounting flanges and onto the drainage plane per manufacturer's recommended mil thickness to create a seamless membrane. Do not seal the sill (bottom) mounting flange to ensure drainage. LAF shall conform to the requirements of AAMA 714.

NOTE 12: The degree of coverage on the flange depends on the window mounting system type and the manufacturer's recommendations.

7.5.3.2 As detailed in Appendix B: WRB Prep Method B-100, apply a continuous 10 mm (3/8 inch) nominal diameter bead of sealant onto skinned-over LAF over the mounting flanges and wet-set WRB into it. Apply another bead of sealant at the edge of the WRB and trowel it to seal the leading edges of the WRB (building paper).

NOTE 13: Check with manufacturers to ensure adhesion and chemical compatibility between LAF, sealants and WRB.

7.6 Remove the previously applied tape which holds the flap of the WRB at the head. Allow the flap to lay flat over the flashing. Apply a new piece of sheathing tape or self-adhering flashing over the WRB flap and the entire diagonal cut made in the WRB. The tape should be compressed against the WRB and the head flashing, which extends over the jamb (see Figure 15). Placing discontinuous lengths of tape across the width of the head seam between the WRB and the head flashing is acceptable but may result in increased air infiltration around the WRB.

FIGURE 15

7.6 At the interior, using a sealant recommended in Section 5.4 and appropriate bond breakers or backer rod, apply a bead of sealant (see Figures 16 and 17), or low-pressure aerosol foam sealant conforming to Section 5.4 (see Figure 18), or other window manufacturer approved material between the window and the rough opening on all sides to form a continuous air seal.

NOTE 14: If a low-pressure foam sealant is used, care should be taken to ensure a watertight seal at the sill. Additionally, care should be taken to maintain a proper drainage path.

NOTE 15: It is recommended to provide a minimum ¼ in. gap to accommodate proper backing and sealant installation between the perimeter of the window and the rough opening.

FIGURE 16

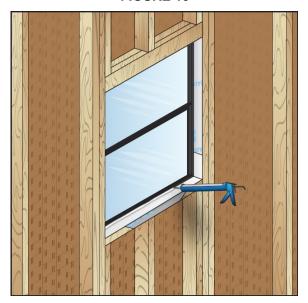


FIGURE 17

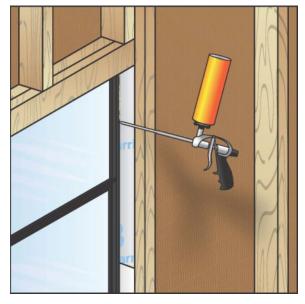


FIGURE 18

7.6.1 For drainage sill pan methods, this interior seal effectively forms a back dam to prevent water intrusion into the interior, thus the integrity (adhesive bond strength) of this seal is critical. A raised upturned leg on the interior plane of the sill pan made from a rigid material can also be used, if properly air sealed. If a rigid or semi-rigid sill pan was used, recheck the seal between the sill of the window and the upturned leg of the sill pan and reseal as needed (see Figure 19).

FIGURE 19

7.6.2 In cases where shims, clips, or anchoring devices cause interference with the application of the interior air and water seal, trim, remove or take steps necessary to seal such obstructions to allow for a continuous air/water seal (see Figure 20). In all cases make sure the entire perimeter joint has been sealed, creating an air/watertight condition.



FIGURE 20

7.6.3 To ensure adequate protection against extreme wind driven water, it is critical that the perimeter interior air and water seal between the window and the sill pan flashing is able to withstand this pressure load without air and water leakage. Special caution needs to be used when applying perimeter air and water seals to the interior corners.

8.0 POST INSTALLATION PROCEDURES

- 8.1 Verify that the window frame and sash are installed plumb, level, square and true, within the specified tolerances (see Section 6.0).
- 8.2 Check of Operable Elements Verify that the operable sashes move freely within their frames and that weather stripping or compressible seals make full contact with mating surfaces.
- 8.3 Verify that operable hardware such as locks, cranks, latches and hinges operate smoothly and that all locking mechanisms engage and operate properly.
- 8.4 Verify that all accessories and other components of the fenestration product assembly are present, such as screens and hardware as applicable.
- 8.5 Verify that Drainage holes are free from any blockages or obstructions.

APPENDIX A: STAKEHOLDER RESPONSIBILITIES

A1.0 This appendix provides users of this standard practice with general guidelines for determining which entities involved in construction projects are typically responsible for various tasks or functions. These guidelines are informative only and are not intended to be mandatory. It is recommended that specific responsibilities for any given project be agreed upon by all involved entities and be documented in applicable project contracts.

A2.0 General Contractor / Design Professional

The General Contractor/Design Professional is typically responsible for the following:

- The necessary coordination of all trades.
- The proper sequencing of construction activities.
- Ensuring that all framed rough openings are of the correct size, square, plumb, level and true, per Section 6.1.2.
- Remedying any discrepancies identified by the Installation Contractor during the pre-installation inspection described in Section 6.1.1.
- Determine and specify appropriate performance requirements of the window units as required by local code per Section 4.6.

A3.0 Installation Contractor

The Installation Contractor is typically responsible for the following:

- Conducting the pre-installation inspection of the framed opening per Section 6.1.1 and notifying the General Contractor of any discrepancies.
- Installing the WRB per Section 6.1.2 and 6.2.
- Installing the window per Section 7.0.
- Verifying the window is properly installed per Section 8.0.

A4.0 Window Manufacturer

The Window Manufacturer is typically responsible for the following:

- Providing window products that are designed to comply with the design pressure and wind load requirements specified by the General Contractor/Design Professional for the project.
- Providing suitable instructions for proper window installation.

APPENDIX B: ALTERNATIVE WATER-RESISTIVE BARRIER (WRB) WRAP METHOD OPTIONS, METHODS B1-100 AND C1-100

- B1.0 Water-Resistive Barrier (WRB) Method B1-100
- B1.1 Box cut the WRB around the rough opening and create a flap above the head with 45-degree cuts as described and illustrated in Section 7.1.1.
- B1.2 Make cuts 50 mm (2 inch) wider than the flashing to be used onto the face of the wall at each jamb corner and fold back jambs as with head flap ensuring that the jamb cuts at the sill are angled upwards (Figure 21).
- B1.3 Apply sill pan flashing per Section 7.2.
- B1.4 Install the window per Section 7.3,
- B1.5 Apply jamb and head flashing per Section 7.4.1 for self-adhering flashing, Section 7.4.2 for mechanically attached flashing, or Section 7.4.3 for liquid applied flashing.
- B1.6 Integration of the WRB with the Jamb Flashing. Two options are acceptable B1.6.1 or B1.6.2:
- B1.6.1 Apply sealant along jambs and re-apply the previously folded over WRB jamb flaps allowing them to integrate with the window frame (see Figures 22 and 23). Press down on sealant bead under WRB. See Figure 24 for jamb detail. WRB to be installed per manufacturer's installation instructions.
- B1.6.2 Cut the WRB back 1 inch beyond the edge of the rough opening. Integrate WRB to the window with sheathing tape or self-adhering flashing. See Figure 25 for jamb detail. WRB to be installed per manufacturer's installation instructions.

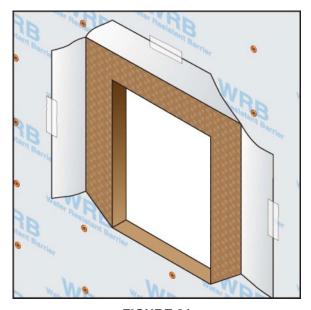


FIGURE 21

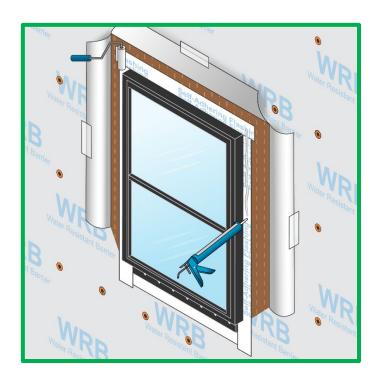
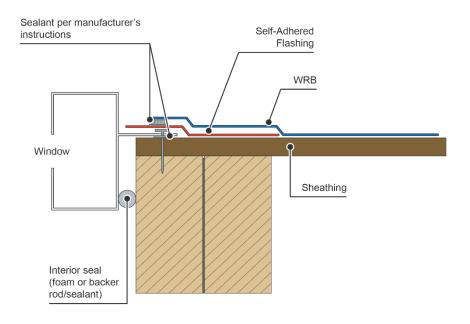



FIGURE 23

FIGURE 24

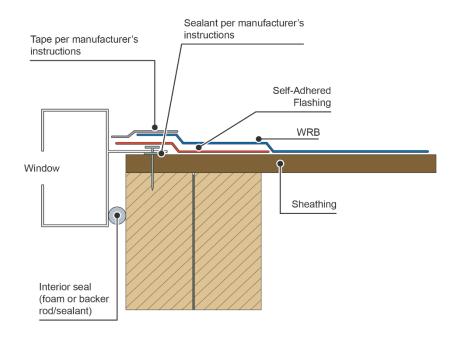


FIGURE 25

B1.7 Complete installation per Sections 7.5 and 7.6.

B2.0 Water-Resistive Barrier (WRB) Method C1-100

- B2.1 Cut the WRB per Full I-Cut (see Figure 26).
- B2.2 Apply sill flashing per Section 7.2.
- B2.3 Apply sealant onto the drainage plane under WRB at jambs (Figure 27) and wrap into cavity and secure (Figure 28). Attach the WRB into position on the inside of the rough opening and trim any excess as required (Figure 29). Press down on sealant bead below WRB. See Figure 30 for jamb detail.
- B2.4 Install the window per Section 7.3 and follow remaining steps per Section 7.4 through 7.6.

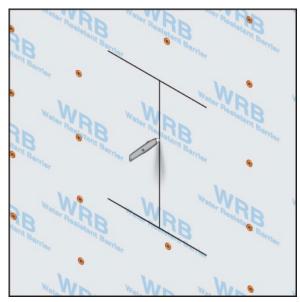


FIGURE 26

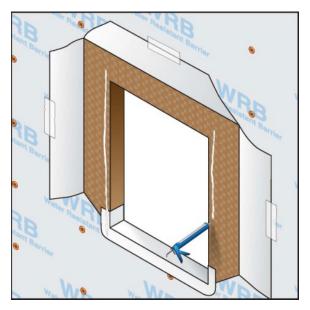


FIGURE 27

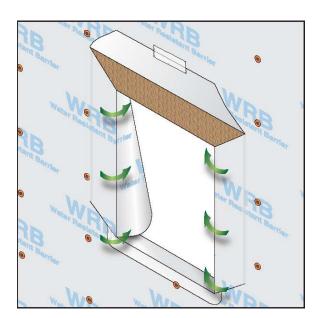


FIGURE 28

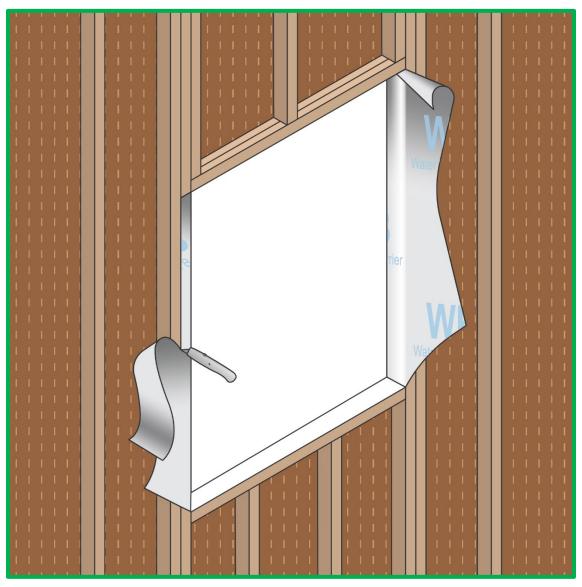


FIGURE 29

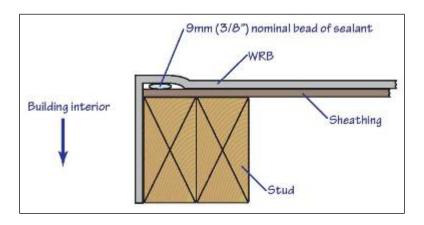


FIGURE 30

C1.0 Apply flashing over the mounting flange of the window at both jambs per manufacturer's instructions. The mechanically attached flexible flashing shall conform to the requirements of AAMA 712.

C1.1 Cut jamb flashing to a measurement equal to twice the roll width of the flashing being used, plus the height of the rough opening, minus 25 mm (1 inch).

C1.2 Apply a continuous 10 mm (3/8 inch) nominal diameter bead of sealant over the drainage plane (wall surface) and the exterior face of the mounting flange and in line with any pre-punched holes or slots, starting 215 mm (8 1/2 inches) above the rough opening (see Figure 31) continuing down the jambs to the bottom of the sill mounting flange.

NOTE 16: Sealant should not be allowed to skin over prior to the installation of any mechanically attached flashing.

FIGURE 31

C1.3 Apply jamb flashing with the edge being between the sealant and the window (see Figure 32).

FIGURE 32

C1.4 Cut a piece of head flashing that is the width of the rough opening, plus two times the roll width of the flashing, plus 100 mm (4 inches).

C1.5 Apply a continuous 10 mm (3/8 inch) nominal diameter bead of sealant along the head. Apply an additional 10 mm (3/8 inch) nominal diameter bead of sealant horizontally 215 mm (8 ½ inches) above the rough opening in line with the top of the jamb flashing (see Figure 33) or as a sloped roof design (see Figure 34).

C1.6 Apply mechanically attached flexible flashing to head over sealants and secure with mechanical fasteners (see Figure 35).

FIGURE 33

FIGURE 34

C1.7 Use fasteners (in accordance with the flashing manufacturer's recommendations) to secure mechanically attached flexible flashing at the head. (see Figure 35). Cover fasteners with WRB or sealant whenever possible.

FIGURE 35